login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012123
E.g.f.: exp(arcsin(tanh(x))).
3
1, 1, 1, 0, -3, -4, 21, 80, -263, -2224, 4841, 88960, -99723, -4942144, -199939, 366928640, 501445617, -35219691264, -101818966319, 4251941253120, 19731909099757, -631113275843584, -4192563651606299, 113005305852006400, 1009030667701246697
OFFSET
0,5
FORMULA
a(n) = (-i)^n * Z(n,i), where i = sqrt(-1) and Z(n,x) denotes the n-th zigzag polynomial as described in A147309. Alternative form of the egf: {sec(i*x) - tan(i*x)}^i. - Peter Bala, Jan 26 2011
a(n)=sum(m=1..n, sum(r=m..n, (sum(k=r..n, (-1)^((3*k)/2)*(sum(i=0..k, (2^i*stirling1(m+i,m)* binomial(m+k-1,m+i-1))/(m+i)!))*binomial((r-2)/2,(r-m-k)/2)))*((-1)^(r-m)+1)*sum(k=0..r-m, binomial(k-1,r-1)*k!*2^(n-k)*stirling2(n,k)*(-1)^(r+k))))/2, n>0, a(0)=1. - Vladimir Kruchinin, Jun 09 2011
a(n) = sum(i=0..n-1, binomial(n-1,i)*euler(i)*a(n-i-1)), a(0)=1. - Vladimir Kruchinin, Feb 26 2015
EXAMPLE
exp(arcsin(tanh(x))) = 1 + x + 1/2!*x^2 - 3/4!*x^4 - 4/5!*x^5 + 21/6!*x^6 ...
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, i]*EulerE[i]*a[n-i-1], {i, 0, n-1}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, May 22 2017, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=sum(sum((sum((-1)^((3*k)/2)*(sum((2^i*stirling1(m+i, m)* binomial(m+k-1, m+i-1))/(m+i)!, i, 0, k))*binomial((r-2)/2, (r-m-k)/2), k, 0, r-m))*((-1)^(r-m)+1)*sum(binomial(k-1, r-1)*k!*2^(n-k)*stirling2(n, k)*(-1)^(r+k), k, r, n), r, m, n), m, 1, n)/2; /* Vladimir Kruchinin, Jun 09 2011 */
(Maxima)
a(n):=if n=0 then 1 else sum(binomial(n-1, i)*euler(i)*a(n-i-1), i, 0, n-1); /* Vladimir Kruchinin, Feb 26 2015 */
(PARI) x='x+O('x^66); Vec(serlaplace(exp(asin(tanh(x))))) \\ Joerg Arndt, Feb 26 2015
CROSSREFS
Sequence in context: A094632 A081698 A182096 * A012255 A012247 A057791
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved