login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080790
Binary emirps, primes whose binary reversal is a different prime.
7
11, 13, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 83, 97, 101, 113, 131, 151, 163, 167, 173, 181, 193, 197, 199, 223, 227, 229, 233, 251, 263, 269, 277, 283, 307, 331, 337, 349, 353, 359, 373, 383, 409, 421, 431, 433, 449, 461, 463, 479, 487, 491, 503, 509, 521
OFFSET
1,1
COMMENTS
Members of A074832 that are not in A006995. - Robert Israel, Aug 31 2016
LINKS
EXAMPLE
A000040(10)=29 -> '11101' rev '10111' -> 23=A000040(9), therefore 29 and 23 are terms.
The prime 19 is not a term, as 19 -> '10011' rev '11001' -> 25=5^2; and 7=A074832(3) is not a term because it is a binary palindrome (A006995) and therefore not different.
MAPLE
revdigs:= proc(n) local L; L:= convert(n, base, 2); add(L[-i]*2^(i-1), i=1..nops(L)) end proc:
filter:= proc(t) local r; if not isprime(t) then return false fi;
r:= revdigs(t); r <> t and isprime(r) end proc:
select(filter, [seq(i, i=3..10000, 2)]); # Robert Israel, Aug 30 2016
PROG
(Python)
from sympy import isprime
def ok(n):
r = int(bin(n)[2:][::-1], 2)
return n != r and isprime(n) and isprime(r)
print([k for k in range(600) if ok(k)]) # Michael S. Branicky, Jul 30 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Mar 25 2003
STATUS
approved