login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080788
Primes that are still primes when turned upsided down.
2
11, 19, 61, 101, 109, 181, 199, 601, 619, 661, 1019, 1061, 1091, 1109, 1181, 1601, 1609, 1669, 1699, 1811, 1901, 1999, 6011, 6091, 6101, 6199, 6619, 6661, 6689, 6691, 6899, 6991, 10061, 10069, 10091, 10691, 10861, 10909, 11069, 11681, 11909, 16001, 16091
OFFSET
1,1
REFERENCES
P. Giannopoulos, The Brainteasers, unpublished.
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..11210 (First 1000 terms from Reinhard Zumkeller)
PROG
(Haskell)
import Data.List (unfoldr)
a048890 n = a048890_list !! (n-1)
a048890_list = filter f a000040_list where
f x = all (`elem` [0, 1, 6, 8, 9]) ds && x' /= x && a010051 x' == 1
where x' = foldl c 0 ds
c v 6 = 10*v + 9; c v 9 = 10*v + 6; c v d = 10*v + d
ds = unfoldr d x
d z = if z == 0 then Nothing else Just $ swap $ divMod z 10
-- Reinhard Zumkeller, Nov 18 2011
(Python)
from sympy import isprime
from itertools import product
def ud(s):
return s[::-1].translate({ord('6'):ord('9'), ord('9'):ord('6')})
def auptod(maxdigits):
alst = []
for d in range(1, maxdigits+1):
for p in product("01689", repeat=d-1):
if d > 1 and p[0] == "0": continue
for end in "19":
s = "".join(p) + end
t, udt = int(s), int(ud(s))
if isprime(t) and isprime(udt): alst.append(t)
return alst
print(auptod(5)) # Michael S. Branicky, Nov 19 2021
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
P. Giannopoulos (pgiannop1(AT)yahoo.com), Mar 12 2003
EXTENSIONS
Missing 1669 and 6689 inserted by Reinhard Zumkeller, Nov 18 2011
STATUS
approved