login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080658
Order of group of n X n X n Rubik cube, under assumptions not-s, not-m, i.
1
1, 3674160, 43252003274489856000, 326318176648849198250599213408124182588293120000000000, 6117367460827460912265057790940131872699535863380422035173008779767508369408000000000000000000
OFFSET
1,2
COMMENTS
The three possible assumptions considered here are the following:
s (for n odd) indicates that we are working in the "supergroup" and so take account of twists of the face centers.
m (for n > 3) indicates that the pieces are marked so that we take account of the permutation of the identically-colored pieces on a face.
i (for n > 3) indicates that we are working in the theoretical invisible group and solve the pieces on the interior of the cube as well as the exterior. It is assumed that the M and S traits apply to the interior pieces as if they were on the exterior of a smaller cube.
REFERENCES
Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
MAPLE
f := proc(n) local A, B, C, D, E, F, G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := (n-1)/2; C := (n-1)/2; D := 0; E := (n+4)*(n-1)*(n-3)/24; G := (n^2-1)*(n-3)/24; else A := n/2; F := 1; B := n/2; C := 0; D := 0; E := n*(n^2-4)/24; G := n*(n-1)*(n-2)/24; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
CROSSREFS
See A007458, A054434, A075152, A074914, A080656-A080662 for other versions.
Sequence in context: A271027 A080657 A075152 * A080656 A074914 A080661
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 01 2003
STATUS
approved