OFFSET
1,2
COMMENTS
The three possible assumptions considered here are the following:
s (for n odd) indicates that we are working in the "supergroup" and so take account of twists of the face centers.
m (for n > 3) indicates that the pieces are marked so that we take account of the permutation of the identically-colored pieces on a face.
i (for n > 3) indicates that we are working in the theoretical invisible group and solve the pieces on the interior of the cube as well as the exterior. It is assumed that the M and S traits apply to the interior pieces as if they were on the exterior of a smaller cube.
REFERENCES
Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 452.
Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
LINKS
Alan Bawden, Cube Lovers Archive, Part 6
MAPLE
f := proc(n) local A, B, C, D, E, F, G; if n mod 2 = 1 then A := (n-1)/2; B := (n-1)/2; C := (n-1)/2; D := 0; E := (n+4)*(n-1)*(n-3)/24; F := 0; G := 0; else A := n/2; B := n/2; C := 0; D := 0; E := n*(n^2-4)/24; F := 1; G := 0; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 28 2003
STATUS
approved