login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079912
Solution to the Dancing School Problem with 7 girls and n+7 boys: f(7,n).
2
1, 8, 133, 1044, 5794, 24720, 86608, 260720, 693552, 1666000, 3675680, 7549488, 14591440, 26770832, 46955760, 79197040, 129067568, 204062160, 314062912, 471875120, 693838800, 1000520848, 1417492880, 1976199792, 2714924080
OFFSET
0,2
COMMENTS
f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.
LINKS
Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
FORMULA
a(0) = 1, a(1) = 8, a(2) = 133, a(3) = 1044, a(4) = 5794; for n>4, a(n) = n^7-14*n^6+126*n^5-700*n^4+2625*n^3-6342*n^2+9072*n-5840.
G.f.: -(46*x^12 -340*x^11 +931*x^10 -1808*x^9 +727*x^8 -1400*x^7 -1506*x^6 -656*x^5 -788*x^4 -148*x^3 -97*x^2 -1) / (x -1)^8. - Colin Barker, Jan 04 2015
MAPLE
seq(n^7-14*n^6+126*n^5-700*n^4+2625*n^3-6342*n^2+9072*n-5840, n=5..20);
MATHEMATICA
Join[{1, 8, 133, 1044, 5794}, Table[n^7-14n^6+126n^5-700n^4+2625n^3- 6342n^2 +9072n-5840, {n, 5, 30}]] (* Harvey P. Dale, May 03 2011 *)
PROG
(PARI) Vec(-(46*x^12 -340*x^11 +931*x^10 -1808*x^9 +727*x^8 -1400*x^7 -1506*x^6 -656*x^5 -788*x^4 -148*x^3 -97*x^2 -1) / (x -1)^8 + O(x^100)) \\ Colin Barker, Jan 04 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaap Spies, Jan 28 2003
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
STATUS
approved