This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079909 Solution to the Dancing School Problem with 4 girls and n+4 boys: f(4,n). 3
 1, 5, 26, 90, 246, 566, 1146, 2106, 3590, 5766, 8826, 12986, 18486, 25590, 34586, 45786, 59526, 76166, 96090, 119706, 147446, 179766, 217146, 260090, 309126, 364806, 427706, 498426, 577590, 665846, 763866, 872346, 992006, 1123590 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information. For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference. REFERENCES Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 J. Spies, Sage program for computing A079909. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(0)=1, a(1)=5, a(n)=n^4 - 2*n^3 + 9*n^2 - 8*n + 6 (n>=2) found by applying theorem 7.2.1 of Brualdi, Ryser: Combinatorial Matrix Theory. G.f.: -(x^2+1)*(x^4+10*x^2+1) / (x-1)^5. - Colin Barker, Jan 04 2015 PROG (PARI) Vec(-(x^2+1)*(x^4+10*x^2+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jan 04 2015 CROSSREFS Cf. A079908-A079928. Sequence in context: A166810 A210367 A261347 * A301518 A047669 A297689 Adjacent sequences:  A079906 A079907 A079908 * A079910 A079911 A079912 KEYWORD nonn,easy AUTHOR Jaap Spies, Jan 28 2003 EXTENSIONS More terms from Benoit Cloitre, Jan 29 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 13:31 EDT 2019. Contains 328161 sequences. (Running on oeis4.)