login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079912 Solution to the Dancing School Problem with 7 girls and n+7 boys: f(7,n). 2

%I

%S 1,8,133,1044,5794,24720,86608,260720,693552,1666000,3675680,7549488,

%T 14591440,26770832,46955760,79197040,129067568,204062160,314062912,

%U 471875120,693838800,1000520848,1417492880,1976199792,2714924080

%N Solution to the Dancing School Problem with 7 girls and n+7 boys: f(7,n).

%C f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.

%C For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.

%D Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.

%H Colin Barker, <a href="/A079912/b079912.txt">Table of n, a(n) for n = 0..1000</a>

%H Jaap Spies, <a href="http://www.jaapspies.nl/mathfiles/dancingschool.pdf">Dancing School Problems, Permanent solutions of Problem 29</a>.

%H J. Spies, <a href="http://www.jaapspies.nl/oeis/a079912.sage">Sage program for computing A079912</a>.

%H J. Spies, <a href="http://www.jaapspies.nl/mathfiles/dancing.sage">Sage program for computing the polynomial a(n)</a>.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).

%F a(0) = 1, a(1) = 8, a(2) = 133, a(3) = 1044, a(4) = 5794; for n>4, a(n) = n^7-14*n^6+126*n^5-700*n^4+2625*n^3-6342*n^2+9072*n-5840.

%F G.f.: -(46*x^12 -340*x^11 +931*x^10 -1808*x^9 +727*x^8 -1400*x^7 -1506*x^6 -656*x^5 -788*x^4 -148*x^3 -97*x^2 -1) / (x -1)^8. - _Colin Barker_, Jan 04 2015

%p seq(n^7-14*n^6+126*n^5-700*n^4+2625*n^3-6342*n^2+9072*n-5840,n=5..20);

%t Join[{1,8,133,1044,5794},Table[n^7-14n^6+126n^5-700n^4+2625n^3- 6342n^2 +9072n-5840,{n,5,30}]] (* _Harvey P. Dale_, May 03 2011 *)

%o (PARI) Vec(-(46*x^12 -340*x^11 +931*x^10 -1808*x^9 +727*x^8 -1400*x^7 -1506*x^6 -656*x^5 -788*x^4 -148*x^3 -97*x^2 -1) / (x -1)^8 + O(x^100)) \\ _Colin Barker_, Jan 04 2015

%Y Cf. A079908-A079928.

%K nonn,easy

%O 0,2

%A _Jaap Spies_, Jan 28 2003

%E More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 00:29 EDT 2019. Contains 322446 sequences. (Running on oeis4.)