OFFSET
0,1
COMMENTS
The memory of a prime p is the number of previous primes contained as substrings in (the decimal representation of) p.
Also the minimal prime such that the number of different prime substrings is n+1 (substrings with leading zeros are considered to be nonprime). - Hieronymus Fischer, Aug 26 2012
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 0..36 (terms 0-31 from Robert G. Wilson v)
FORMULA
a(n) > 10^floor((sqrt(8*n+1)-1)/2). - Hieronymus Fischer, Aug 26 2012
a(n) >= min(A035244(k+1), k >= n). - Hieronymus Fischer, Aug 26 2012
EXAMPLE
113 is the smallest prime with memory = 3. (The smaller primes 3, 11, 13 are substrings of 113.) Hence a(3) = 113.
MATHEMATICA
f[n_] := Block[{id = IntegerDigits@n}, len = Length@id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[id, k, 1], {k, len}], 1]], True] + 1]; t = Table[0, {30}]; p = 2; While[p < 11500000000, a = f@p; If[t[[a]] == 0, pp = PrimePi@p; t[[a]] = pp; Print[{a, p, pp}]]; p = NextPrime@p]; t (* Robert G. Wilson v, Aug 03 2010 *)
CROSSREFS
KEYWORD
base,nice,nonn
AUTHOR
Joseph L. Pe, Feb 16 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v, Feb 25 2003
a(24)-a(27) from Robert G. Wilson v, Aug 03 2010
STATUS
approved