login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A079400
p^11 * A000594(p) as p runs through the primes.
0
-49152, 44641044, 235839843750, -33108358984792, 152531042848687932, -1035399161730148306, -236679453955357194222, 1241951576022650010980, 17763491481043493649144, 1566626343296375073246270, -1342664413260839080544608, -32418959483434058984538682
OFFSET
1,1
EXAMPLE
a(1) = 2^11 * A000594(2) = -49152.
MATHEMATICA
a[n_] := Module[{p = Prime[n]}, p^11 * RamanujanTau[p]]; Array[a, 12] (* Amiram Eldar, Jan 10 2025 *)
PROG
(PARI) T(n)=n*(n+1)/2;
rtau3(n)=local(y, j); y=0; j=1; while (T(j-1)<n, j++); j--; for (i=1, j, y=y-(-1)^i*(2*i-1)*x^(T(i-1))); y=y^8; polcoeff(y, n-1);
forprime (p=2, 40, print1(p^11*rtau3(p), ", "))
CROSSREFS
Cf. A000594.
Sequence in context: A236162 A331355 A204627 * A205625 A205360 A045085
KEYWORD
sign,changed
AUTHOR
Jon Perry, Jan 07 2003
STATUS
approved