OFFSET
0,2
COMMENTS
We work on the square grid in which each cell has four neighbors.
Start with cell (0,0) ON and all other cells OFF; at each succeeding stage the cells that share exactly one edge with an ON cell change their state.
This is not the CA discussed by Singmaster in the reference given in A079314. That was an error based on my misreading of the paper. - N. J. A. Sloane, Aug 05 2009
If cells never turn OFF we get the CA of A147562.
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 678", based on the 5-celled von Neumann neighborhood. - Robert Price, May 21 2016
REFERENCES
D. Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
Robert Price, Table of n, a(n) for n = 0..128
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Robert Price, Diagrams of the first 20 stages
D. Singmaster, On the cellular automaton of Ulam and Warburton, 2003 [Cached copy, included with permission]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
EXAMPLE
Generations 1 through 4 (X = ON):
..................X
..........X......XXX
....X...........X...X
X..XXX..X.X.X..XX.X.XX
....X...........X...X
..........X......XXX
..................X
...........Sizes of first 20 generations:.........
.........n...OFF->ON...ON->OFF..Net gain..Total ON
--------------------------------------------------
.........0.........0.........0.........0.........0
.........1.........1.........0.........1.........1
.........2.........4.........0.........4.........5
.........3.........4.........4.........0.........5
.........4........12.........0........12........17
.........5.........4........12........-8.........9
.........6........20.........0........20........29
.........7........12........20........-8........21
.........8........44.........0........44........65
.........9.........4........44.......-40........25
........10........52.........0........52........77
........11........12........52.......-40........37
........12........76.........0........76.......113
........13........12........76.......-64........49
........14.......100.........0.......100.......149
........15........36.......100.......-64........85
........16.......172.........0.......172.......257
........17.........4.......172......-168........89
........18.......180.........0.......180.......269
........19........12.......180......-168.......101
........20.......204.........0.......204.......305
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 12 2003
EXTENSIONS
More terms from John W. Layman, Oct 29 2003
Edited by N. J. A. Sloane, Aug 05 2009
STATUS
approved