login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078718
a(n) = (-1)^n*(2*n - 1)*CatalanNumber(n - 2) for n >= 2, a(n) = n for n = 0, 1.
2
0, 1, 3, -5, 14, -45, 154, -546, 1980, -7293, 27170, -102102, 386308, -1469650, 5616324, -21544100, 82907640, -319929885, 1237518450, -4796857230, 18627909300, -72457790790, 282257178060, -1100982015900, 4299680491080, -16809921068850, 65785111513524, -257683159276956
OFFSET
0,3
COMMENTS
Original definition: Let f(i, j) = Sum_{k=0..2*i} (binomial(2*i, k)*binomial(2*j, i+j-k)*(-1)^(i+j-k) (this is essentially the same as the triangle in A068555); then a(n) = f(n, n-2)/2. Apart perhaps from signs, f(n, 0) and f(n, n) give A000984, f(n, 1) gives A002420, f(n, n-1) gives 2*A000984.
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
FORMULA
G.f.: x^2*A'(x)*G(A(x))/A(x), where A(x) = x*(1+sqrt(1+4*x))/2, G(x) =(2*cosh(asinh((3^(3/2)*sqrt(x))/2)/3)*sinh(asinh((3^(3/2)*sqrt(x))/2)/3)*sqrt(x))/(sqrt(3)*sqrt((27*x)/4+1))+(4*sinh(asinh((3^(3/2)*sqrt(x))/2)/3)^2)/3+1. - Vladimir Kruchinin, Dec 16 2016
G.f.: (sqrt(4*x+1)*(4*x^2+x)+6*x^2+x)/(sqrt(4*x+1)+4*x+1). - Vladimir Kruchinin, Dec 17 2016
a(n) ~ (-1)^n * 2^(2*n-3) / sqrt(Pi*n). - Vaclav Kotesovec, Dec 17 2016
a(n) = (1/2)*Sum_{k=0,..,2*n} ( binomial(2*n, k)*binomial(2*(n - 2), 2*n - 2 - k)*(-1)^(2*n - 2 - k) ), with a(0)=0, a(1)=1. - G. C. Greubel, Feb 16 2017
D-finite with recurrence (-n+1)*a(n) +6*(-2*n+5)*a(n-1) +16*(-2*n+7)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
MATHEMATICA
s = (Sqrt[4*x+1]*(4*x^2+x) + 6*x^2 + x)/(Sqrt[4*x+1] + 4*x+1) + O[x]^28; CoefficientList[s, x] (* Jean-François Alcover, Dec 17 2016, after Vladimir Kruchinin *)
Table[(1/2)*Sum[ Binomial[2*n, k]*Binomial[2*(n - 2), 2*n - 2 - k]*(-1)^(2*n - 2 - k), {k, 0, 2*n}], {n, 0, 50}] (* G. C. Greubel, Feb 16 2017 *)
(* Mathematica returns CatalanNumber[-2] = 0 and CatalanNumber[-1] = -1. This extended definition is in accordance with the alternative definition of the Catalan numbers C(n) = binomial(2*n, n) - binomial(2*n, n-1). *)
a[n_] := (-1)^n (2 n - 1) CatalanNumber[n - 2];
Table[a[n], {n, 0, 21}] (* Peter Luschny, Nov 28 2021 *)
PROG
(Maxima)
A(x) := x*(1 + sqrt(1+4*x))/2;
G(x) := (2*cosh(asinh((3^(3/2)*sqrt(x))/2)/3)*sinh(asinh((3^(3/2)*sqrt(x))/2)/3)* sqrt(x))/(sqrt(3)*sqrt((27*x)/4+1))+(4*sinh(asinh((3^(3/2)*sqrt(x))/2)/3)^2)/3 + 1;
taylor(x^2*diff(A(x), x)*G(A(x))/A(x), x, 0, 20); /* Vladimir Kruchinin, Dec 16 2016 */
(PARI) concat([0, 1], for(n=2, 25, print1(sum(k=0, 2*n, (1/2)* binomial(2*n, k)* binomial(2*( n-2), 2*n-k-2)*(-1)^(2*n-k-2)), ", "))) \\ G. C. Greubel, Feb 16 2017
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 20 2002
EXTENSIONS
New name by Peter Luschny, Nov 28 2021
STATUS
approved