login
A078597
Primes of the form p*(p+4)+2 where p and p+4 are primes.
1
23, 79, 223, 439, 4759, 53359, 77839, 95479, 99223, 159199, 194479, 239119, 378223, 416023, 680623, 2223079, 2595319, 2873023, 3186223, 3515623, 4003999, 5022079, 6456679, 6859159, 8732023, 9235519, 9492559, 10017223, 10595023
OFFSET
1,1
COMMENTS
More generally, if a and b are even numbers, let Seq(a,b) be the sequence of primes of the form p*(p+a)+b where p and p+a are primes. Seq(a,b) is finite if either a^2+b == 2 (mod 3) or a^2-4*b is a square. Is it infinite in all other cases?
LINKS
MATHEMATICA
Select[ #(#+4)+2&/@Select[Prime/@Range[500], PrimeQ[ #+4]&], PrimeQ]
PROG
(PARI) prodtp(n1, n2, a, b)=local(f, x); f=0; forprime(x=n1, n2, if(isprime(x+a), f=x*(x+a)+b; if(isprime(f), print(x" "x+a" "f" "); ); ); ); \ Computes that part of Seq(a, b) with n1<=p<=n2.
CROSSREFS
Except for the term 23, this is a subsequence of A048880. A051779 is Seq(2, 2). A049002 is Seq(0, -2). A045637 is Seq(0, 4).
Sequence in context: A141974 A364148 A142650 * A280576 A160297 A210706
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 08 2002
EXTENSIONS
Edited by Dean Hickerson, Dec 10 2002
STATUS
approved