login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078392 Sum of GCD's of parts in all partitions of n. 13
1, 3, 5, 9, 11, 20, 21, 35, 42, 61, 66, 112, 113, 168, 210, 279, 313, 461, 508, 719, 852, 1088, 1277, 1756, 2006, 2573, 3106, 3937, 4593, 5958, 6872, 8676, 10305, 12655, 15009, 18664, 21673, 26559, 31447, 38217, 44623, 54386, 63303, 76379, 89696, 106879 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equals row sums of triangle A168534. - Gary W. Adamson, Nov 28 2009

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = Sum_{d|n} d * A000837(n/d).

a(n) = Sum_{d|n} phi(n/d)*numbpart(d) = Sum_{d|n} A000010(n/d)*A000041(d). - Vladeta Jovovic, May 08 2003

EXAMPLE

Partitions of 4 are 1+1+1+1, 1+1+2, 2+2, 1+3, 4, the corresponding GCD's of parts are 1,1,2,1,4 and their sum is a(4) = 9.

MAPLE

with(numtheory): with(combinat):

a:= n-> add(phi(n/d)*numbpart(d), d=divisors(n)):

seq(a(n), n=1..50);  # Alois P. Heinz, Apr 02 2015

MATHEMATICA

a[n_] := Sum[EulerPhi[n/d]*PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 50}] (* Jean-Fran├žois Alcover, Jul 01 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A168534, A181844 (the same for LCM), A319301.

Sequence in context: A282098 A034760 A070639 * A187753 A231716 A113488

Adjacent sequences:  A078389 A078390 A078391 * A078393 A078394 A078395

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Dec 24 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 02:22 EDT 2020. Contains 336290 sequences. (Running on oeis4.)