login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181844
Sum over all partitions of n of the LCM of the parts.
9
1, 1, 3, 6, 12, 23, 38, 73, 118, 198, 318, 530, 819, 1298, 1974, 2975, 4516, 6698, 9980, 14550, 21186, 30304, 43503, 62030, 87908, 123292, 172543, 239720, 331688, 458198, 629376, 860332, 1168172, 1583176, 2138438, 2876283, 3859770, 5159886, 6863702, 9112356
OFFSET
0,3
COMMENTS
Old name was: Row sums of A181842.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..188 (terms n=1..80 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k>=0} k * A256067(n,k) = Sum_{k>=0} A256553(n,k)*A256554(n,k). - Alois P. Heinz, Apr 02 2015
MAPLE
with(combstruct):
a181844 := proc(n) local k, L, l, R, part;
R := NULL; L := 0;
for k from 1 to n do
part := iterstructs(Partition(n), size=k):
while not finished(part) do
l := nextstruct(part);
L := L + ilcm(op(l));
od;
od;
L end:
# second Maple program:
b:= proc(n, i, r) option remember; `if`(n=0, r, `if`(i<1, 0,
b(n, i-1, r)+b(n-i, min(i, n-i), ilcm(i, r))))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..42); # Alois P. Heinz, Mar 18 2019
MATHEMATICA
t[n_, k_] := LCM @@@ IntegerPartitions[n, {n - k + 1}] // Total; a[n_] := Sum[t[n, k], {k, 1, n}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Jul 26 2013 *)
CROSSREFS
Cf. A078392 (the same for GCD), A181843, A181842, A256067, A256553, A256554, A306956.
Sequence in context: A249565 A174201 A327546 * A162506 A328609 A227681
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 07 2010
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 29 2015
New name from Alois P. Heinz, Mar 18 2019
STATUS
approved