OFFSET
0,3
COMMENTS
Convolution of A010892(n) and (-1)^n*A001045(n+1). The positive sequence has g.f. 1/((1-x-2x^2)*(1+x+x^2)). This is the convolution of A001045(n+1) and A049347(n). - Paul Barry, May 19 2004
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,2,-3,2)
FORMULA
G.f.: 1/((1+x-2x^2)*(1-x+x^2));
a(n) = Sum_{k=0..n} (2*(-2)^k/3 + 1/3)*2*sin(Pi*(n-k)/3 + Pi/3)/sqrt(3);
a(n) = 2^(n+3)*cos(Pi*n)/21 + 8*sqrt(3)*cos(Pi*n/3 + Pi/6)/63 + 4*sqrt(3)*sin(Pi*n/3 + Pi/3)/63 + 2*sqrt(3)*sin(Pi*n/3)/9 + 1/3. - Paul Barry, May 19 2004
a(n) = 1/3 + (-1)^n*2^(n+3)/21 - A117373(n+1)/7. - R. J. Mathar, Sep 27 2012
MATHEMATICA
CoefficientList[Series[(1-x)^(-1)/(1+x-x^2+2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 2, -3, 2}, {1, 0, 2, -3}, 40] (* Harvey P. Dale, Apr 25 2016 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved