login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077903
Expansion of (1-x)^(-1)/(1 + x - x^2 + 2*x^3).
0
1, 0, 2, -3, 6, -12, 25, -48, 98, -195, 390, -780, 1561, -3120, 6242, -12483, 24966, -49932, 99865, -199728, 399458, -798915, 1597830, -3195660, 6391321, -12782640, 25565282, -51130563, 102261126, -204522252, 409044505, -818089008, 1636178018, -3272356035, 6544712070
OFFSET
0,3
COMMENTS
Convolution of A010892(n) and (-1)^n*A001045(n+1). The positive sequence has g.f. 1/((1-x-2x^2)*(1+x+x^2)). This is the convolution of A001045(n+1) and A049347(n). - Paul Barry, May 19 2004
FORMULA
G.f.: 1/((1+x-2x^2)*(1-x+x^2));
a(n) = Sum_{k=0..n} (2*(-2)^k/3 + 1/3)*2*sin(Pi*(n-k)/3 + Pi/3)/sqrt(3);
a(n) = 2^(n+3)*cos(Pi*n)/21 + 8*sqrt(3)*cos(Pi*n/3 + Pi/6)/63 + 4*sqrt(3)*sin(Pi*n/3 + Pi/3)/63 + 2*sqrt(3)*sin(Pi*n/3)/9 + 1/3. - Paul Barry, May 19 2004
a(n) = 1/3 + (-1)^n*2^(n+3)/21 - A117373(n+1)/7. - R. J. Mathar, Sep 27 2012
MATHEMATICA
CoefficientList[Series[(1-x)^(-1)/(1+x-x^2+2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 2, -3, 2}, {1, 0, 2, -3}, 40] (* Harvey P. Dale, Apr 25 2016 *)
CROSSREFS
Sequence in context: A045761 A187741 A216632 * A038086 A032305 A032218
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved