login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x)^(-1)/(1 + x - x^2 + 2*x^3).
0

%I #15 Sep 03 2019 02:29:26

%S 1,0,2,-3,6,-12,25,-48,98,-195,390,-780,1561,-3120,6242,-12483,24966,

%T -49932,99865,-199728,399458,-798915,1597830,-3195660,6391321,

%U -12782640,25565282,-51130563,102261126,-204522252,409044505,-818089008,1636178018,-3272356035,6544712070

%N Expansion of (1-x)^(-1)/(1 + x - x^2 + 2*x^3).

%C Convolution of A010892(n) and (-1)^n*A001045(n+1). The positive sequence has g.f. 1/((1-x-2x^2)*(1+x+x^2)). This is the convolution of A001045(n+1) and A049347(n). - _Paul Barry_, May 19 2004

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,-3,2)

%F G.f.: 1/((1+x-2x^2)*(1-x+x^2));

%F a(n) = Sum_{k=0..n} (2*(-2)^k/3 + 1/3)*2*sin(Pi*(n-k)/3 + Pi/3)/sqrt(3);

%F a(n) = 2^(n+3)*cos(Pi*n)/21 + 8*sqrt(3)*cos(Pi*n/3 + Pi/6)/63 + 4*sqrt(3)*sin(Pi*n/3 + Pi/3)/63 + 2*sqrt(3)*sin(Pi*n/3)/9 + 1/3. - _Paul Barry_, May 19 2004

%F a(n) = 1/3 + (-1)^n*2^(n+3)/21 - A117373(n+1)/7. - _R. J. Mathar_, Sep 27 2012

%t CoefficientList[Series[(1-x)^(-1)/(1+x-x^2+2x^3),{x,0,40}],x] (* or *) LinearRecurrence[{0,2,-3,2},{1,0,2,-3},40] (* _Harvey P. Dale_, Apr 25 2016 *)

%K sign

%O 0,3

%A _N. J. A. Sloane_, Nov 17 2002