OFFSET
1,2
COMMENTS
The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series sum_{k=1..n} x^a(k) to exceed unity.
A heuristic argument suggests that the limit of a(n)/n is m - sum_{n=m..inf} log(1 + x^n)/log(x) = 5.9293123466..., where x=7/10 and m=floor(log(1-x)/log(x))=3. - Paul D. Hanna, Nov 16 2002
FORMULA
a(n)=sum_{k=1..n}floor(g_k) where g_1=1, g_{n+1}=log_x(x^frac(g_n) - x) (n>0) at x=(7/10) and frac(y) = y - floor(y).
a(n) seems to be asymptotic to c*n with c around 6... - Benoit Cloitre
EXAMPLE
a(3)=8 since (7/10) +(7/10)^3 +(7/10)^8 < 1 and (7/10) +(7/10)^3 +(7/10)^7 > 1.
MATHEMATICA
s = 0; a = {}; Do[ If[s + (7/10)^n < 1, s = s + (7/10)^n; a = Append[a, n]], {n, 1, 368}]; a
heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[7/10], 20]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Nov 06 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Nov 08 2002; also extended by Benoit Cloitre, Nov 06 2002
STATUS
approved