login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077473 Greedy powers of (5/9): sum_{n=1..inf} (5/9)^a(n) = 1. 7
1, 2, 4, 6, 8, 11, 13, 18, 21, 24, 27, 28, 30, 32, 35, 37, 40, 43, 45, 50, 51, 59, 62, 64, 73, 76, 79, 82, 83, 86, 87, 93, 96, 99, 100, 103, 106, 108, 110, 112, 113, 117, 118, 121, 123, 126, 127, 131, 137, 139, 140, 143, 145, 146, 148, 154, 155, 157, 163, 165, 166 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series sum_{k=1..n} x^a(k) to exceed unity.

A heuristic argument suggests that the limit of a(n)/n is m - sum_{n=m..inf} log(1 + x^n)/log(x) = 2.8326013771..., where x=5/9 and m=floor(log(1-x)/log(x))=1. - Paul D. Hanna, Nov 16 2002

LINKS

Table of n, a(n) for n=1..61.

FORMULA

a(n)=sum_{k=1..n}floor(g_k) where g_1=1, g_{n+1}=log_x(x^frac(g_n) - x) (n>0) at x=(5/9) and frac(y) = y - floor(y).

a(n) seems to be asymptotic to c*n with c around 2.8... - Benoit Cloitre

EXAMPLE

a(3)=4 since (5/9) +(5/9)^2 +(5/9)^4 < 1 and (5/9) +(5/9)^2 +(5/9)^3 > 1.

MATHEMATICA

s = 0; a = {}; Do[ If[s + (5/9)^n < 1, s = s + (5/9)^n; a = Append[a, n]], {n, 1, 173}]; a

heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[5/9], 20]

CROSSREFS

Cf. A077468, A077469, A077470, A077471, A077472, A077474, A077475.

Sequence in context: A174058 A186382 A331417 * A200738 A129896 A134421

Adjacent sequences:  A077470 A077471 A077472 * A077474 A077475 A077476

KEYWORD

easy,nonn

AUTHOR

Paul D. Hanna, Nov 06 2002

EXTENSIONS

Edited and extended by Robert G. Wilson v, Nov 08 2002. Also extended by Benoit Cloitre, Nov 06 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 19:18 EDT 2021. Contains 347659 sequences. (Running on oeis4.)