OFFSET
0,1
COMMENTS
The limit supremum of F(n)/n^theta is 1. - Charles R Greathouse IV, Oct 30 2016
Named by Finch (2003) after Kenneth B. Stolarsky and Heiko Harborth. Stolarsky (1977) evaluated that its value is in the interval [0.72, 0.815], and Harborth (1977) calculated the value 0.812556. - Amiram Eldar, Dec 03 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 145-151.
LINKS
Heiko Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc., Vol. 62, No. 1 (1977), pp. 19-22.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See pp. 2, 4.
Kenneth B. Stolarsky, Digital sums and binomial coefficients, Notices of the American Mathematical Society, Vol. 22, No. 6 (1975), A-669, entire volume.
Kenneth B. Stolarsky, Power and Exponential Sums of Digital Sums Related to Binomial Coefficient Parity, SIAM J. Appl. Math., Vol. 32, No. 4 (1977), pp. 717-730.
Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant.
Eric Weisstein's World of Mathematics, Pascal's Triangle.
FORMULA
EXAMPLE
0.812556559016006387694882...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Nov 06 2002
STATUS
approved