login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077454
a(n) = sigma_3(n^3)/sigma(n^3).
4
1, 39, 511, 2359, 12621, 19929, 101179, 149943, 368089, 492219, 1611831, 1205449, 4457701, 3945981, 6449331, 9588151, 22722609, 14355471, 44576623, 29772939, 51702469, 62861409, 141611691, 76620873, 196890121, 173850339, 268218727, 238681261, 574336533, 251523909
OFFSET
1,2
LINKS
FORMULA
a(n) = A001158(n^3)/A000203(n^3).
Multiplicative with a(p^e) = (p^(6*e+2) + p^(3*e+1) + 1)/(p^2 + p + 1). - Amiram Eldar, Sep 09 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)*Pi^4/630) * Product_{p prime} (1 - 1/p^2 - 1/p^6 + 1/p^7 - 1/p^8 + 1/p^9) = 0.09343400455... . - Amiram Eldar, Oct 28 2022
EXAMPLE
a(2) = sigma_3(2^3)/sigma(2^3) = 585/15 = 39.
MATHEMATICA
f[p_, e_] := (p^(6*e+2) + p^(3*e+1) + 1)/(p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 30] (* Amiram Eldar, Sep 09 2020 *)
PROG
(PARI) a(n)=sumdiv(n^3, d, d^3)/sigma(n^3)
(PARI) a(n) = my(f=factor(n^3)); sigma(f, 3)/sigma(f); \\ Michel Marcus, Sep 09 2020
KEYWORD
nonn,easy,mult
AUTHOR
Benoit Cloitre, Nov 30 2002
STATUS
approved