|
|
A076362
|
|
Smallest x such that A061498(x)=n: least number in dRRS of which n distinct term occur.
|
|
1
|
|
|
1, 3, 9, 15, 385, 105, 3003, 1155, 51051, 36465, 15015, 692835, 440895, 255255, 10140585, 8580495, 4849845
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Is it a rule that in each dRRS[a(n)], distinct differences are {1,2,...,n}?
a(17) > 2.4*10^7. a(18) <= 248834355, a(19) <= 190285095, a(20) <= 111546435. - Giovanni Resta, Apr 13 2020
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
n=5, a(5)=105 because in dRRS[105]={1,2,4,3,2,....,1,5,...,2,1} five distinct terms[=consecutive residue-differences] occur, namely: {1,2,3,4,5}.
|
|
MATHEMATICA
|
gw[x_] := Table[GCD[w, x], {w, 1, x}] rrs[x_] := Flatten[Position[gw[x], 1]] dr[x_] := Delete[RotateLeft[rrs[x]]-rrs[x], -1] did[x_] := Length[Union[dr[x]]] t=Table[0, {25}]; Do[s=did[n]; If[s<258&&t[[s]]==0, t[[s]]=n], {n, 1, 100000}]; t
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|