login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Smallest x such that A061498(x)=n: least number in dRRS of which n distinct term occur.
1

%I #24 Aug 21 2024 22:49:01

%S 1,3,9,15,385,105,3003,1155,51051,36465,15015,692835,440895,255255,

%T 10140585,8580495,4849845

%N Smallest x such that A061498(x)=n: least number in dRRS of which n distinct term occur.

%C Is it a rule that in each dRRS[a(n)], distinct differences are {1,2,...,n}?

%C No more terms up to 2*10^5. - _Michel Marcus_, Mar 26 2020

%C a(17) > 2.4*10^7. a(18) <= 248834355, a(19) <= 190285095, a(20) <= 111546435. - _Giovanni Resta_, Apr 13 2020

%F a(n) = Min{x; A061498(x)=n}.

%e n=5, a(5)=105 because in dRRS[105]={1,2,4,3,2,....,1,5,...,2,1} five distinct terms[=consecutive residue-differences] occur, namely: {1,2,3,4,5}.

%t gw[x_] := Table[GCD[w, x], {w, 1, x}] rrs[x_] := Flatten[Position[gw[x], 1]] dr[x_] := Delete[RotateLeft[rrs[x]]-rrs[x], -1] did[x_] := Length[Union[dr[x]]] t=Table[0, {25}]; Do[s=did[n]; If[s<258&&t[[s]]==0, t[[s]]=n], {n, 1, 100000}]; t

%Y Cf. A061498, A000010.

%K nonn,more

%O 0,2

%A _Labos Elemer_, Oct 09 2002

%E a(8)-a(10) from _Michel Marcus_, Mar 25 2020

%E a(11)-a(16) from _Giovanni Resta_, Apr 13 2020