login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076359
a(n) = denominator(n!/phi(n!)).
2
1, 1, 1, 1, 4, 4, 8, 8, 8, 8, 16, 16, 192, 192, 192, 192, 3072, 3072, 55296, 55296, 55296, 55296, 110592, 110592, 110592, 110592, 110592, 110592, 442368, 442368, 13271040, 13271040, 13271040, 13271040, 13271040, 13271040, 477757440
OFFSET
1,5
COMMENTS
Numerator of Product_{p<=n, p prime} (1 - 1/p). - Franz Vrabec, Jan 28 2014
LINKS
FORMULA
a(n) = denominator(A000142(n)/A048855(n)).
a(n) = A038110(A036234(n)). - Robert Israel, Oct 18 2018
MAPLE
P:= 1: p:= 1: v:= 1:
while p < 100 do q:= nextprime(p);
for i from p to q-1 do A[i]:= v od;
P:= P * (1-1/q);
v:= numer(P);
p:= q;
od:
seq(A[i], i=1..q-1); # Robert Israel, Oct 18 2018
MATHEMATICA
dnf[n_]:=With[{nn=n!}, Denominator[nn/EulerPhi[nn]]]; Array[dnf, 40] (* Harvey P. Dale, Feb 21 2015 *)
PROG
(PARI) a(n) = numerator(prod(p=1, n, if (isprime(p), (1-1/p), 1))); \\ Michel Marcus, Jan 28 2014
CROSSREFS
KEYWORD
easy,nonn,frac
AUTHOR
Labos Elemer, Oct 08 2002
STATUS
approved