login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075875
Triangular numbers that are 3-almost primes.
6
28, 45, 66, 78, 105, 153, 171, 190, 231, 325, 406, 435, 465, 561, 595, 741, 861, 903, 946, 1378, 1653, 2211, 2278, 2485, 3081, 3655, 3741, 4371, 4465, 4753, 5151, 5253, 5995, 6441, 7021, 7381, 7503, 8515, 8911, 9453, 9591, 10011, 10153, 10585, 11026
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
q:= n-> is(numtheory[bigomega](n)=3):
select(q, [i*(i+1)/2$i=0..200])[]; # Alois P. Heinz, Mar 27 2024
EXAMPLE
a(1)=28, 28 is a triangular number and 28 = 2*2*7, i.e., is a product of 3 prime factors so is 3-almost prime.
MATHEMATICA
Select[Accumulate[Range[200]], PrimeOmega[#]==3&] (* Harvey P. Dale, Jul 24 2012 *)
PROG
(PARI) issemi(n)=bigomega(n)==2
ok(m, n)=if(isprime(m), issemi(n), isprime(n) && issemi(m))
list(lim)=my(v=List()); lim\=1; for(n=7, (sqrt(8*lim+1)-1)\2, if(if(n%2, ok(n, (n+1)/2), ok(n/2, n+1)), listput(v, n*(n+1)/2))); Vec(v) \\ Charles R Greathouse IV, Jun 12 2017
CROSSREFS
Cf. A000217, A014612, A068443, A128896 (subsequence).
Sequence in context: A219685 A180045 A144581 * A332764 A116541 A292989
KEYWORD
easy,nice,nonn
AUTHOR
Shyam Sunder Gupta, Oct 19 2002
STATUS
approved