Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 27 2024 21:24:14
%S 28,45,66,78,105,153,171,190,231,325,406,435,465,561,595,741,861,903,
%T 946,1378,1653,2211,2278,2485,3081,3655,3741,4371,4465,4753,5151,5253,
%U 5995,6441,7021,7381,7503,8515,8911,9453,9591,10011,10153,10585,11026
%N Triangular numbers that are 3-almost primes.
%H Charles R Greathouse IV, <a href="/A075875/b075875.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%F q:= n-> is(numtheory[bigomega](n)=3):
%F select(q, [i*(i+1)/2$i=0..200])[]; # _Alois P. Heinz_, Mar 27 2024
%e a(1)=28, 28 is a triangular number and 28 = 2*2*7, i.e., is a product of 3 prime factors so is 3-almost prime.
%t Select[Accumulate[Range[200]],PrimeOmega[#]==3&] (* _Harvey P. Dale_, Jul 24 2012 *)
%o (PARI) issemi(n)=bigomega(n)==2
%o ok(m,n)=if(isprime(m), issemi(n), isprime(n) && issemi(m))
%o list(lim)=my(v=List()); lim\=1; for(n=7,(sqrt(8*lim+1)-1)\2, if(if(n%2, ok(n,(n+1)/2), ok(n/2,n+1)), listput(v, n*(n+1)/2))); Vec(v) \\ _Charles R Greathouse IV_, Jun 12 2017
%Y Cf. A000217, A014612, A068443, A128896 (subsequence).
%K easy,nice,nonn
%O 1,1
%A _Shyam Sunder Gupta_, Oct 19 2002