login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075693
Difference between 10-adic numbers defined in A018248 & A018247.
4
1, 5, -3, 9, -9, -7, 5, 7, 5, -7, 7, -9, -9, -1, 5, -3, -1, 5, 5, -9, 3, -5, -5, -9, -9, 7, -3, -3, 9, 7, 1, 9, 9, -9, 9, 7, -3, -9, -7, 9, 3, 5, 3, 5, 1, 3, 5, 1, -5, -1, -1, 9, 9, 9, 7, 7, -7, 3, -3, -7, 9, -7, -1, -9, 9, -1, -3, -3, 7, 5, -3, 9, 9, -9, -7, -9, 9, -1, -7, 3, -9, 5, 9, -7
OFFSET
0,2
COMMENTS
Numbers in A018247 and A018248 are known as automorphic numbers in base 10, meaning that the infinite integers a=(...256259918212890625) or b=(...743740081787109376) provides a nontrivial solution to x*x == x (mod any power of 10).
Read backwards so as to match their counterparts (A007185 & A016090), A018247(0)+A018248(0) = 11 & A018247(n)+A018248(n) = 9 for all n's > 0 and their product is A076308.
All entries must be odd.
Is the accumulative sum equally positive and negative, i.e. does the sum equal 0 infinitely often?
LINKS
FORMULA
a(n) = A018248(n) - A018247(n). - Seiichi Manyama, Jul 26 2017
MATHEMATICA
(* execute the programming in both A018247 & A018248 *) Reverse[b - a]
aa[n_] := For[t = 5; k = 1, True, k++, t = Mod[t^2, 10^k]; If[k == n, Return[ Quotient[t, 10^(n-1)]]]]; bb[n_] := Reap[ For[t = 6; k = 1, k <= n , k++, t = Mod[t^5, 10^k]; Sow[ Quotient[10*t, 10^k]]]][[2, 1, n]]; a[n_] := bb[n] - aa[n]; Table[a[n], {n, 1, 84}](* Jean-François Alcover, May 25 2012, after Paul D. Hanna *)
CROSSREFS
Sequence in context: A019955 A296345 A317907 * A198134 A082454 A377226
KEYWORD
easy,sign,base
AUTHOR
Robert G. Wilson v, Sep 26 2002
STATUS
approved