login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019955
Decimal expansion of tangent of 57 degrees.
1
1, 5, 3, 9, 8, 6, 4, 9, 6, 3, 8, 1, 4, 5, 8, 2, 9, 0, 4, 8, 2, 6, 7, 9, 6, 9, 7, 2, 6, 0, 2, 7, 8, 0, 1, 2, 5, 7, 0, 8, 3, 8, 7, 0, 3, 2, 1, 6, 5, 4, 8, 1, 6, 7, 9, 7, 9, 9, 1, 8, 5, 5, 0, 3, 0, 0, 2, 3, 3, 3, 5, 6, 6, 9, 4, 9, 0, 8, 4, 1, 2, 5, 4, 0, 8, 1, 5, 7, 6, 6, 3, 6, 7, 8, 2, 9, 6, 5, 5
OFFSET
1,2
COMMENTS
Also the decimal expansion of cotangent of 33 degrees. - Ivan Panchenko, Sep 01 2014
FORMULA
Equals cot(11*Pi/90) = (1/4)*(2 - sqrt(2*(5 - sqrt(5))))*(2 - (2 + sqrt(3))*(3 + sqrt(5))). - G. C. Greubel, Nov 22 2018
EXAMPLE
1.5398649638145829048267969726027801257083870321654816797991855...
MATHEMATICA
RealDigits[Tan[57 Degree], 10, 120][[1]] (* Harvey P. Dale, Jul 20 2016 *)
RealDigits[Tan[19*Pi/60], 10, 100][[1]] (* G. C. Greubel, Nov 22 2018 *)
PROG
(PARI) default(realprecision, 100); tan(19*Pi/60) \\ G. C. Greubel, Nov 22 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(19*Pi(R)/60); // G. C. Greubel, Nov 22 2018
(Sage) numerical_approx(tan(19*pi/60), digits=100) # G. C. Greubel, Nov 22 2018
CROSSREFS
Cf. A019866 (sine of 56 degrees).
Sequence in context: A201938 A201410 A332528 * A296345 A317907 A075693
KEYWORD
nonn,cons
STATUS
approved