The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075463 a(n) is the number of rotation-reflection inequivalent solutions to the all-ones lights out problem on an n X n square. 5
 1, 1, 1, 5, 1, 1, 1, 1, 43, 1, 10, 1, 1, 5, 1, 43, 1, 1, 8356, 1, 1, 1, 2080, 5, 1, 1, 1, 1, 136, 131720, 1, 131720, 8356, 5, 10, 1, 1, 1, 536911936, 1, 1, 1, 1, 5, 1, 1, 134225920, 1, 43, 43, 1, 1, 1, 5, 1, 1, 1, 1, 524800, 1, 137439609088, 2099728, 1, 33564704, 549756338176, 1, 536911936, 1, 43, 1, 2080, 1, 1, 5, 1, 1, 1, 1, 2305843011898064896 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Reflected and rotated solutions are considered identical. REFERENCES See A075462 for references. LINKS Zhao Hui Du, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Lights Out Puzzle MATHEMATICA a[n_, i_, j_ ] := Table[If[Total[Abs[{i, j} - {r, s}]] <= 1, 1, 0], {r, n}, {s, n}] //Flatten a[n_, k_ ] := a[n, Quotient[k + n - 1, n], Mod[k, n, 1]] m[n_ ] := a[n, # ] & /@ Range[n^2] ker[n_ ] := NullSpace[m[n], Modulus -> 2] b[n_ ] := Table[1, {n^2}] sol[n_ ] := LinearSolve[m[n], b[n], Modulus -> 2]; allSolutions[n_ ] := Module[{s, k}, s = sol[n]; k = ker[n]; Mod[(s + # ) & /@ (Total[(#*k)] & /@ Tuples[{0, 1}, Length[k]]), 2] ] //Sort MatrixRotate[m_ ] := Transpose[Reverse[m]] MatrixRotate[m_, n_ ] := Nest[MatrixRotate, m, Mod[n, 4]] DihedralOrbit[m_ ] := Union@Join[ MatrixRotate[m, # ] & /@ Range[0, 3], MatrixRotate[Reverse[m], # ] & /@ Range[0, 3] ] essentialSolutions[n_ ] := Module[{as}, as = Partition[ #, n] & /@ allSolutions[n]; Union[as, SameTest -> (MemberQ[DihedralOrbit[ #1], #2] &)] ] Length[essentialSolutions[ # ]] & /@ Range[16] (* Jacob A. Siehler *) PROG (PARI)H(n)={    my(r);    r=matrix(n, n, X, Y, Mod(0, 2));    for(u=1, n, r[u, u]=Mod(1, 2));    for(u=1, n-1, r[u, u+1]=Mod(1, 2); r[u+1, u]=Mod(1, 2));    r } E(n)={    my(r);    r=matrix(n, n, X, Y, Mod(0, 2));    for(u=1, n, r[u, u]=Mod(1, 2));    r } b(n)={    vector(n, X, Mod(1, 2))~ } a(n)={    my(x0, x1, tmp, y, z, mH, vb, v0, v1, yb, zb);    my(A159257, A075462, A075463, a2, a3, a4, a5, tm, tb);    x0=E(n); mH=H(n); x1=mH; vb=b(n);    y=matrix(n, n); yb=vector(n);    z=matrix(n, n); zb=vector(n);    v0=vb; v1=mH*vb+v0;    y[1, ]=x0[1, ]; yb[1]=Mod(0, 2);    y[2, ]=x1[1, ]; yb[2]=v0[1];    z[1, ]=x0[n, ]; zb[1]=Mod(0, 2);    z[2, ]=x1[n, ]; zb[2]=v0[n];    for(u=2, n-1,       tmp=mH*x1+x0; x0=x1; x1=tmp;       y[u+1, ]=x1[1, ]; z[u+1, ]=x1[n, ];       tmp=mH*v1+v0+vb; v0=v1; v1=tmp;       yb[u+1]=v0[1]; zb[u+1]=v0[n]    );    x1=mH*x1+x0;    A159257 = n-matrank(x1);    A075462=2^A159257;    tm=matrix(2*n, n, X, Y, Mod(0, 2)); tb=vector(2*n, X, Mod(0, 2))~;    for(u=1, n, tm[u, ]=x1[u, ]; tb[u]=v1[u]);    for(u=1, n,        tm[n+u, u]=Mod(1, 2); tm[n+u, n-u+1]+=Mod(1, 2); tb[n+u]=Mod(0, 2)    );    a2=matinverseimage(tm, tb);    if(length(a2)==0, a2=0, a2=2^(n-matrank(tm)));    for(u=1, n, tm[n+u, ]=y[u, ]; tb[n+u]=yb[u]; tm[n+u, u]+=Mod(1, 2));    a3=matinverseimage(tm, tb);    if(length(a3)==0, a3=0, a3=2^(n-matrank(tm)));    for(u=1, n, tm[n+u, ]=y[n+1-u, ]; tb[n+u]=yb[n+1-u]; tm[n+u, u]+=Mod(1, 2));    a4=matinverseimage(tm, tb);    if(length(a4)==0, a4=0, a4=2^(n-matrank(tm)));    for(u=1, n, tm[n+u, ]=y[u, ]+z[n+1-u, ]; tb[n+u]=yb[u]+zb[n+1-u]);    a5=matinverseimage(tm, tb);    if(length(a5)==0, a5=0, a5=2^(n-matrank(tm)));    A075463=(A075462+2*(a2+a3+a4)+a5)/8 } \\ Zhao Hui Du, Mar 29 2014 CROSSREFS Cf. A075462, A075464. Sequence in context: A094635 A220054 A263152 * A026518 A051008 A304042 Adjacent sequences:  A075460 A075461 A075462 * A075464 A075465 A075466 KEYWORD nonn,nice,hard AUTHOR Eric W. Weisstein, Sep 17 2002 EXTENSIONS a(19)-a(29) from Jacob A. Siehler, Apr 29 2008 Terms a(30) and beyond from Zhao Hui Du, Mar 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 23:44 EST 2021. Contains 340249 sequences. (Running on oeis4.)