login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of rotation-reflection inequivalent solutions to the all-ones lights out problem on an n X n square.
5

%I #30 Apr 02 2018 09:29:35

%S 1,1,1,5,1,1,1,1,43,1,10,1,1,5,1,43,1,1,8356,1,1,1,2080,5,1,1,1,1,136,

%T 131720,1,131720,8356,5,10,1,1,1,536911936,1,1,1,1,5,1,1,134225920,1,

%U 43,43,1,1,1,5,1,1,1,1,524800,1,137439609088,2099728,1,33564704,549756338176,1,536911936,1,43,1,2080,1,1,5,1,1,1,1,2305843011898064896

%N a(n) is the number of rotation-reflection inequivalent solutions to the all-ones lights out problem on an n X n square.

%C Reflected and rotated solutions are considered identical.

%D See A075462 for references.

%H Zhao Hui Du, <a href="/A075463/b075463.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LightsOutPuzzle.html">Lights Out Puzzle</a>

%t a[n_, i_, j_ ] := Table[If[Total[Abs[{i, j} - {r, s}]] <= 1, 1, 0], {r, n}, {s, n}] //Flatten

%t a[n_, k_ ] := a[n, Quotient[k + n - 1, n], Mod[k, n, 1]]

%t m[n_ ] := a[n, # ] & /@ Range[n^2]

%t ker[n_ ] := NullSpace[m[n], Modulus -> 2]

%t b[n_ ] := Table[1, {n^2}]

%t sol[n_ ] := LinearSolve[m[n], b[n], Modulus -> 2];

%t allSolutions[n_ ] := Module[{s, k},

%t s = sol[n];

%t k = ker[n];

%t Mod[(s + # ) & /@ (Total[(#*k)] & /@ Tuples[{0, 1}, Length[k]]), 2]

%t ] //Sort

%t MatrixRotate[m_ ] := Transpose[Reverse[m]]

%t MatrixRotate[m_, n_ ] := Nest[MatrixRotate, m, Mod[n, 4]]

%t DihedralOrbit[m_ ] := Union@Join[

%t MatrixRotate[m, # ] & /@ Range[0, 3],

%t MatrixRotate[Reverse[m], # ] & /@ Range[0, 3]

%t ]

%t essentialSolutions[n_ ] := Module[{as},

%t as = Partition[ #, n] & /@ allSolutions[n];

%t Union[as, SameTest -> (MemberQ[DihedralOrbit[ #1], #2] &)]

%t ]

%t Length[essentialSolutions[ # ]] & /@ Range[16]

%t (* _Jacob A. Siehler_ *)

%o (PARI)H(n)={

%o my(r);

%o r=matrix(n,n,X,Y,Mod(0,2));

%o for(u=1,n,r[u,u]=Mod(1,2));

%o for(u=1,n-1,r[u,u+1]=Mod(1,2);r[u+1,u]=Mod(1,2));

%o r

%o }

%o E(n)={

%o my(r);

%o r=matrix(n,n,X,Y,Mod(0,2));

%o for(u=1,n,r[u,u]=Mod(1,2));

%o r

%o }

%o b(n)={

%o vector(n,X,Mod(1,2))~

%o }

%o a(n)={

%o my(x0,x1,tmp,y,z,mH,vb,v0,v1,yb,zb);

%o my(A159257,A075462,A075463,a2,a3,a4,a5,tm,tb);

%o x0=E(n);mH=H(n);x1=mH;vb=b(n);

%o y=matrix(n,n);yb=vector(n);

%o z=matrix(n,n);zb=vector(n);

%o v0=vb;v1=mH*vb+v0;

%o y[1,]=x0[1,];yb[1]=Mod(0,2);

%o y[2,]=x1[1,];yb[2]=v0[1];

%o z[1,]=x0[n,];zb[1]=Mod(0,2);

%o z[2,]=x1[n,];zb[2]=v0[n];

%o for(u=2,n-1,

%o tmp=mH*x1+x0;x0=x1;x1=tmp;

%o y[u+1,]=x1[1,];z[u+1,]=x1[n,];

%o tmp=mH*v1+v0+vb;v0=v1;v1=tmp;

%o yb[u+1]=v0[1];zb[u+1]=v0[n]

%o );

%o x1=mH*x1+x0;

%o A159257 = n-matrank(x1);

%o A075462=2^A159257;

%o tm=matrix(2*n,n,X,Y,Mod(0,2));tb=vector(2*n,X,Mod(0,2))~;

%o for(u=1,n,tm[u,]=x1[u,];tb[u]=v1[u]);

%o for(u=1,n,

%o tm[n+u,u]=Mod(1,2);tm[n+u,n-u+1]+=Mod(1,2);tb[n+u]=Mod(0,2)

%o );

%o a2=matinverseimage(tm,tb);

%o if(length(a2)==0, a2=0, a2=2^(n-matrank(tm)));

%o for(u=1,n,tm[n+u,]=y[u,];tb[n+u]=yb[u];tm[n+u,u]+=Mod(1,2));

%o a3=matinverseimage(tm,tb);

%o if(length(a3)==0, a3=0, a3=2^(n-matrank(tm)));

%o for(u=1,n,tm[n+u,]=y[n+1-u,];tb[n+u]=yb[n+1-u];tm[n+u,u]+=Mod(1,2));

%o a4=matinverseimage(tm,tb);

%o if(length(a4)==0, a4=0, a4=2^(n-matrank(tm)));

%o for(u=1,n,tm[n+u,]=y[u,]+z[n+1-u,];tb[n+u]=yb[u]+zb[n+1-u]);

%o a5=matinverseimage(tm,tb);

%o if(length(a5)==0, a5=0, a5=2^(n-matrank(tm)));

%o A075463=(A075462+2*(a2+a3+a4)+a5)/8

%o } \\ _Zhao Hui Du_, Mar 29 2014

%Y Cf. A075462, A075464.

%K nonn,nice,hard

%O 1,4

%A _Eric W. Weisstein_, Sep 17 2002

%E a(19)-a(29) from _Jacob A. Siehler_, Apr 29 2008

%E Terms a(30) and beyond from _Zhao Hui Du_, Mar 24 2014