login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075178
Denominators of expansion of 1/x+1/log(1-x).
5
2, 12, 12, 120, 20, 504, 168, 720, 180, 1320, 88, 65520, 10920, 5040, 720, 24480, 68, 28728, 3192, 39600, 27720, 182160, 1840, 1965600, 163800, 39312, 3024, 97440, 2320, 3437280, 229152, 3769920, 235620, 42840, 280, 138181680, 219336, 35568, 1872, 3247200
OFFSET
0,1
COMMENTS
The numerator sequence is |A006232(n+1)|, n>=0.
|A006232(n+1)|= numerator(r(n)), n>=1, with r(n) := sum(|stirling1(n,k)|*B(k+1)/(k+1),k=1..n), n>=1 and B(n): =A027641(n)/A027642(n) (Bernoulli numbers) and stirling1(n,m)=A008275(n,m), n>=m>=1; r(0) := 1/2.
FORMULA
Denominators from e.g.f. 1/x + 1/log(1-x) (and of signed sequence from e.g.f. 1/x - 1/log(1+x)).
a(n) = denominator(r(n)), n>=0, with rational r(n) defined in one of the comments.
EXAMPLE
r(n) sequence, n>=0: 1/2, 1/12, 1/12, 19/120, 9/20, 863/504, 1375/168, 33953/720, 57281/180,...
MATHEMATICA
With[{nn=40}, Denominator[CoefficientList[Series[1/x+1/Log[1-x], {x, 0, nn}] , x] Range[0, nn]!]] (* Harvey P. Dale, Feb 18 2012 *)
PROG
(Sage)
def A075178_list(len):
f, R, C = 1, [0], [1]+[0]*len
for n in (1..len):
for k in range(n, 0, -1):
C[k] = -C[k-1] * k / (k + 1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).denominator())
f *= n
return R[1:]
print(A075178_list(40)) # Peter Luschny, Feb 21 2016
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Sep 06, 2002
STATUS
approved