OFFSET
0,1
COMMENTS
FORMULA
Denominators from e.g.f. 1/x + 1/log(1-x) (and of signed sequence from e.g.f. 1/x - 1/log(1+x)).
a(n) = denominator(r(n)), n>=0, with rational r(n) defined in one of the comments.
EXAMPLE
r(n) sequence, n>=0: 1/2, 1/12, 1/12, 19/120, 9/20, 863/504, 1375/168, 33953/720, 57281/180,...
MATHEMATICA
With[{nn=40}, Denominator[CoefficientList[Series[1/x+1/Log[1-x], {x, 0, nn}] , x] Range[0, nn]!]] (* Harvey P. Dale, Feb 18 2012 *)
PROG
(Sage)
def A075178_list(len):
f, R, C = 1, [0], [1]+[0]*len
for n in (1..len):
for k in range(n, 0, -1):
C[k] = -C[k-1] * k / (k + 1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).denominator())
f *= n
return R[1:]
print(A075178_list(40)) # Peter Luschny, Feb 21 2016
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Sep 06, 2002
STATUS
approved