|
|
A075070
|
|
a(n) = n-th compositorial number / (product of those primes which divide the n-th compositorial number).
|
|
1
|
|
|
1, 2, 4, 32, 288, 576, 6912, 13824, 207360, 3317760, 59719680, 1194393600, 25082265600, 50164531200, 1203948748800, 30098718720000, 60197437440000, 1625330810880000, 45509262704640000, 1365277881139200000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Smallest integer of the form 'Product of first n composite number/ product of first k primes'.
Divide Compositorial(n) by Primorial(k) choosing k to give the smallest integer. (k+1)-th prime does not divide a(n).
|
|
LINKS
|
Table of n, a(n) for n=0..19.
|
|
FORMULA
|
A036691/(prime factors of A036691)
|
|
EXAMPLE
|
a(0) = 1, a(5) = (4*6*8*9*10)/(2*3*5) = 576, 10 is the fifth composite number.
|
|
MATHEMATICA
|
Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; Table[ Product[ Composite[i], {i, 1, n}]/ Times @@ PrimeFactors[ Product[ Composite[i], {i, 1, n}]], {n, 0, 20}]
|
|
CROSSREFS
|
Cf. A002808.
Sequence in context: A019060 A247014 A085055 * A144937 A009110 A225170
Adjacent sequences: A075067 A075068 A075069 * A075071 A075072 A075073
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amarnath Murthy, Sep 08 2002
|
|
EXTENSIONS
|
Edited and extended by Robert G. Wilson v, Jul 15 2003
Further edited by N. J. A. Sloane, Sep 13 2008 at the suggestion of R. J. Mathar
|
|
STATUS
|
approved
|
|
|
|