login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074809
Largest prime factor of A019518, concatenation of first n primes.
4
2, 23, 47, 2357, 223, 35339, 214282847, 7717859, 806801, 185176472401, 357211, 4967701595369, 104364752351, 27558919, 5269410931806332951, 274784055330749, 1191126125288819, 178258515898000387, 2313161253378144566969023310693, 8730041915527145606449758346652473, 26293517701186435480644832888393, 29890227360205834316383307128051, 3858432486690092813, 7122852423207105431971, 93753283248830261744671
OFFSET
1,1
LINKS
FORMULA
a(n) = A006530(A019518(n)). - Daniel Suteu, May 26 2022
EXAMPLE
For n=5: concatenation of {2,3,5,7,11} is 235711 = 7*151*223, largest prime divisor is a(5)=223.
MATHEMATICA
<<NumberTheory`NumberTheoryFunctions` sz[x_] :=FromDigits[Flatten[Table[IntegerDigits[Prime[j]], {j, 1, x}], 1]] Table[Max[PrimeFactorList[sz[w]]], {w, 1, 25}] (* Labos Elemer, Mar 18 2005 *)
Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Prime[ Range[n]]]]][[-1, 1]], {n, 25}] (* Harvey P. Dale, Apr 27 2015 *)
PROG
(PARI) a(n) = vecmax(factor(eval(concat(apply(s->Str(s), primes(n)))))[, 1]); \\ Daniel Suteu, May 26 2022
CROSSREFS
Cf. A019518.
Sequence in context: A049592 A054679 A057621 * A084237 A106928 A070934
KEYWORD
nonn,base
AUTHOR
Jason Earls, Sep 08 2002
EXTENSIONS
More terms from Labos Elemer, Mar 18 2005
Edited by Charles R Greathouse IV, Apr 23 2010
STATUS
approved