OFFSET
1,2
COMMENTS
From Yifan Xie, Nov 17 2024: (Start)
T(m, n) is the minimum sum of side lengths of squares that exactly cover a m X n rectangle.
T(m, n) is the minimum number of nonzero elements of a m X n matrix such that the sum of each row is n, and the sum of each column is m.
(End)
LINKS
Nathaniel Johnston, First 150 antidiagonals, flattened
Micky Bullock, The Diagonal Problem (2 dimensions).
Alberto L. Delgado's Problem of the Week No. 145.
FORMULA
T(m, n) = m + n - 1 if m and n are coprime; T(m, n) = d * T(m/d, n/d) where d is the greatest common divisor of m and n, otherwise.
T(m, n) = m + n - gcd(m, n). - Luc Rousseau, Sep 15 2017
EXAMPLE
The array begins:
1 2 3 4 5 6 7 8
2 2 4 4 6 6 8 8
3 4 3 6 7 6 9 10
4 4 6 4 8 8 10 8
5 6 7 8 5 10 11 12
6 6 6 8 10 6 12 12
7 8 9 10 11 12 7 14
8 8 10 8 12 12 14 8
...
MAPLE
A074712 := proc(m, n) local d: d:=gcd(m, n): if(d=1)then return m+n-1: else return d*procname(m/d, n/d): fi: end: seq(seq(A074712(n-d+1, d), d=1..n), n=1..8); # Nathaniel Johnston, May 09 2011
MATHEMATICA
T[m_, n_]=m+n-GCD[m, n]; Table[T[m, s-m], {s, 2, 10}, {m, 1, s-1}]//Flatten (* Luc Rousseau, Sep 16 2017 *)
PROG
(PARI) (T(m, n)=m+n-gcd(m, n)); for(s=2, 10, for(m=1, s-1, n=s-m; print1(T(m, n), ", "))) \\ Luc Rousseau, Sep 16 2017
CROSSREFS
KEYWORD
AUTHOR
Jens Voß, Sep 04 2002
STATUS
approved