login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074671
Five-digit distinct-digit primes.
13
10243, 10247, 10253, 10259, 10267, 10273, 10289, 10357, 10369, 10427, 10429, 10453, 10457, 10459, 10463, 10487, 10529, 10567, 10589, 10597, 10627, 10639, 10657, 10687, 10723, 10729, 10739, 10753, 10789, 10837, 10847, 10853, 10859, 10867, 10937, 10957
OFFSET
1,1
COMMENTS
There are exactly 2529 five-digit primes with all distinct digits. The end of the sequence is: 97241, 97283, 97301, 97381, 97423, 97453, 97463, 97501, 97523, 97561, 97583, 97613, 97651, 97813, 97841, 97843, 97861, 98017, 98041, 98047, 98057, 98123, 98143, 98207, 98213, 98251, 98257, 98317, 98321, 98327, 98347, 98407, 98453, 98467, 98473, 98507, 98543, 98561, 98563, 98573, 98621, 98627, 98641, 98713, 98731.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..2529 (full sequence)
EXAMPLE
a(1)=10243 and a(2529)=98731 because these are the first and the last 5-digit primes with all distinct digits.
MATHEMATICA
Select[Range[10243, 98731, 2], Length[Union[IntegerDigits[ # ]]]==5&&PrimeQ[ # ]&]
Select[Prime[Range[1230, 9592]], Max[DigitCount[#]]==1&] (* Harvey P. Dale, Mar 16 2016 *)
PROG
(PARI) is(n)=isprime(n) && #digits(n)==5 && #Set(digits(n))==5 \\ Charles R Greathouse IV, Feb 11 2017
CROSSREFS
The first differences are in A074672. 4-digit distinct-digit primes are in A074673. 6-digit distinct-digit primes are in A074669, see also A074670. 7-digit distinct-digit primes are in A074667, see also A074668. 8-digit distinct-digit primes are in A074665, see also A074666.
Sequence in context: A235693 A247948 A254563 * A235157 A156119 A109176
KEYWORD
fini,full,nonn,base
AUTHOR
Zak Seidov, Aug 30 2002
STATUS
approved