login
A074665
8-digit distinct digit primes.
15
10234589, 10234759, 10234897, 10235647, 10235749, 10235867, 10236547, 10236857, 10237849, 10238467, 10238597, 10238647, 10238759, 10238957, 10239487, 10239587, 10239847, 10243567, 10243657, 10243759, 10243769
OFFSET
1,1
COMMENTS
There are exactly 90510 eight-digit primes with all distinct digits. The last few are: 98745623, 98746031, 98746231, 98746321, 98750143, 98750213, 98750261, 98751043, 98751203, 98751403, 98751643, 98752061, 98752301, 98752361, 98752403, 98752603, 98752613, 98753201, 98753401, 98754163, 98754301, 98756431, 98760241, 98760421, 98760523, 98761543, 98762051, 98762431, 98762501, 98764013, 98764021, 98764153, 98764321, 98765143, 98765201, 98765413, 98765431.
LINKS
Daniel Starodubtsev, Table of n, a(n) for n = 1..90510 (complete sequence)
EXAMPLE
10247693 is a member because it is prime and has 8 digits all distinct.
MATHEMATICA
Select[Range[10234589, 98765431, 2], Length[Union[IntegerDigits[ # ]]]==8 &&PrimeQ[ # ]&]
PROG
(PARI) is(n)=isprime(n) && #digits(n)==8 && #Set(digits(n))==8 \\ Charles R Greathouse IV, Feb 11 2017
CROSSREFS
First differences are in A074666.
Sequence in context: A219743 A276510 A235696 * A235160 A109177 A109179
KEYWORD
fini,full,nonn,base
AUTHOR
Zak Seidov, Aug 30 2002
STATUS
approved