|
|
A074504
|
|
a(n) = 1^n + 2^n + 8^n.
|
|
0
|
|
|
3, 11, 69, 521, 4113, 32801, 262209, 2097281, 16777473, 134218241, 1073742849, 8589936641, 68719480833, 549755822081, 4398046527489, 35184372121601, 281474976776193, 2251799813816321, 18014398509744129, 144115188076380161
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..19.
Index entries for linear recurrences with constant coefficients, signature (11,-26,16).
|
|
FORMULA
|
From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-x) + 1/(1-2*x) + 1/(1-8*x).
E.g.f.: e^x + e^(2*x) + e^(8*x). (End)
a(n) = 10*a(n-1) - 16*a(n-2) + 7 with a(0)=3, a(1)=11. - Vincenzo Librandi, Jul 21 2010
|
|
MATHEMATICA
|
Table[1^n + 2^n + 8^n, {n, 0, 20}]
LinearRecurrence[{11, -26, 16}, {3, 11, 69}, 20] (* Harvey P. Dale, Oct 17 2020 *)
|
|
CROSSREFS
|
Cf. A001550, A001576, A034513, A001579, A074501..A074580.
Sequence in context: A201259 A177008 A218923 * A126115 A018193 A121945
Adjacent sequences: A074501 A074502 A074503 * A074505 A074506 A074507
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Aug 23 2002
|
|
STATUS
|
approved
|
|
|
|