login
A074112
Let omega(m) be the number of distinct prime divisors of m. Then a(n) is the largest n-digit squarefree number such that omega(n) > omega(j) for all j < n.
2
6, 78, 966, 9870, 99330, 930930, 9699690, 99953490, 999068070, 9592993410, 99978788910, 999890501610, 9814524629910, 99999887777790, 998448347106210, 9999999768941490, 99992911041433410, 997799870344687410, 9999839051940347610, 99987077573596883670
OFFSET
1,1
MAPLE
A074112 := proc(n)
option remember;
local a, o, wrks, j ;
if n = 1 then
return 6;
end if;
for a from 10^n-1 to 10^(n-2) by -1 do
if numtheory[issqrfree](a) then
o := omega(a) ;
wrks := true;
for j from 1 to n-1 do
if omega(procname(j)) >= o then
wrks := false;
break;
end if;
end do:
if wrks then
return a;
end if;
end if;
end do:
return -1 ;
end proc:
for j from 1 do
print( A074112(j)) ;
end do: # R. J. Mathar, Oct 03 2014
CROSSREFS
Sequence in context: A068884 A186663 A069670 * A372181 A197103 A345360
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Aug 27 2002
EXTENSIONS
Corrected and extended by Matthew Conroy, Aug 27 2002
Definition corrected by R. J. Mathar, Oct 03 2014
a(8) to a(20) from Charlie Neder, Jan 15 2019
STATUS
approved