%I #17 Jan 16 2019 04:13:46
%S 6,78,966,9870,99330,930930,9699690,99953490,999068070,9592993410,
%T 99978788910,999890501610,9814524629910,99999887777790,
%U 998448347106210,9999999768941490,99992911041433410,997799870344687410,9999839051940347610,99987077573596883670
%N Let omega(m) be the number of distinct prime divisors of m. Then a(n) is the largest n-digit squarefree number such that omega(n) > omega(j) for all j < n.
%H Charlie Neder, <a href="/A074112/b074112.txt">Table of n, a(n) for n = 1..33</a>
%H Charlie Neder, <a href="/A074112/a074112.py.txt">Python program for computing this sequence</a>
%p A074112 := proc(n)
%p option remember;
%p local a,o,wrks,j ;
%p if n = 1 then
%p return 6;
%p end if;
%p for a from 10^n-1 to 10^(n-2) by -1 do
%p if numtheory[issqrfree](a) then
%p o := omega(a) ;
%p wrks := true;
%p for j from 1 to n-1 do
%p if omega(procname(j)) >= o then
%p wrks := false;
%p break;
%p end if;
%p end do:
%p if wrks then
%p return a;
%p end if;
%p end if;
%p end do:
%p return -1 ;
%p end proc:
%p for j from 1 do
%p print( A074112(j)) ;
%p end do: # _R. J. Mathar_, Oct 03 2014
%Y Cf. A002110, A074111.
%K base,nonn
%O 1,1
%A _Amarnath Murthy_, Aug 27 2002
%E Corrected and extended by _Matthew Conroy_, Aug 27 2002
%E Definition corrected by _R. J. Mathar_, Oct 03 2014
%E a(8) to a(20) from _Charlie Neder_, Jan 15 2019