login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073808
Number of common divisors of sigma_1(n) and sigma_2(n).
5
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 8, 3, 2, 2, 4, 2, 2, 6, 4, 2, 3, 2, 4, 3, 2, 3, 4, 2, 4, 3, 4, 2, 3, 2, 8, 4, 2, 2, 4, 4, 4, 3, 4, 2, 6, 3, 4, 6, 4, 2, 12, 2, 2, 4, 2, 3, 3, 2, 8, 3, 3, 2, 4, 2, 2, 4, 4, 3, 3, 2, 4, 3, 2, 2, 6, 3, 2, 6, 4, 2, 4, 3, 8, 3, 2, 3, 8, 2, 4, 4, 4, 2, 3, 2, 4
OFFSET
1,3
COMMENTS
a(n) = Card[Intersection[D[A000203(n)], D[A001157(n)]]]. - This is the formula given by the original author. D[x] here means the set of divisors of x. - Antti Karttunen, Nov 23 2017
LINKS
FORMULA
a(n) = A000005(gcd(A000203(n), A001157(n))). - Antti Karttunen, Nov 23 2017
EXAMPLE
n=10: sigma[1,10]=18, sigma[1,10]=130 Intersection[{1,2,3,6,9,18},{1,2,5,10,13,26,65,130}]={1,2}, so a(10)=2.
MATHEMATICA
g1[x_] := Divisors[DivisorSigma[1, x]] g2[x_] := Divisors[DivisorSigma[2, x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}]
(* Second program: *)
Table[Length@ Apply[Intersection, Divisors@ Array[DivisorSigma[#, n] &, 2]], {n, 105}] (* Michael De Vlieger, Nov 23 2017 *)
PROG
(PARI) A073808(n) = numdiv(gcd(sigma(n), sigma(n, 2))); \\ Antti Karttunen, Nov 23 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 13 2002
STATUS
approved