The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073808 Number of common divisors of sigma_1(n) and sigma_2(n). 5
 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 8, 3, 2, 2, 4, 2, 2, 6, 4, 2, 3, 2, 4, 3, 2, 3, 4, 2, 4, 3, 4, 2, 3, 2, 8, 4, 2, 2, 4, 4, 4, 3, 4, 2, 6, 3, 4, 6, 4, 2, 12, 2, 2, 4, 2, 3, 3, 2, 8, 3, 3, 2, 4, 2, 2, 4, 4, 3, 3, 2, 4, 3, 2, 2, 6, 3, 2, 6, 4, 2, 4, 3, 8, 3, 2, 3, 8, 2, 4, 4, 4, 2, 3, 2, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) = Card[Intersection[D[A000203(n)], D[A001157(n)]]]. - This is the formula given by the original author. D[x] here means the set of divisors of x. - Antti Karttunen, Nov 23 2017 LINKS Antti Karttunen, Table of n, a(n) for n = 1..16384 FORMULA a(n) = A000005(gcd(A000203(n), A001157(n))). - Antti Karttunen, Nov 23 2017 EXAMPLE n=10: sigma[1,10]=18, sigma[1,10]=130 Intersection[{1,2,3,6,9,18},{1,2,5,10,13,26,65,130}]={1,2}, so a(10)=2. MATHEMATICA g1[x_] := Divisors[DivisorSigma[1, x]] g2[x_] := Divisors[DivisorSigma[2, x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}] (* Second program: *) Table[Length@ Apply[Intersection, Divisors@ Array[DivisorSigma[#, n] &, 2]], {n, 105}] (* Michael De Vlieger, Nov 23 2017 *) PROG (PARI) A073808(n) = numdiv(gcd(sigma(n), sigma(n, 2))); \\ Antti Karttunen, Nov 23 2017 CROSSREFS Cf. A000005, A000203, A001157, A073802, A073809. Sequence in context: A116371 A103377 A103817 * A032572 A237975 A327343 Adjacent sequences:  A073805 A073806 A073807 * A073809 A073810 A073811 KEYWORD nonn AUTHOR Labos Elemer, Aug 13 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 09:58 EDT 2020. Contains 334840 sequences. (Running on oeis4.)