login
A073722
Least k such that sigma(k) mod primepi(k) = n or zero if no such number exists.
2
2, 4, 10, 8, 17, 42, 23, 111, 32, 59, 31, 67, 49, 110, 63, 60, 82, 84, 89, 75, 191, 98, 141, 97, 101, 256, 171, 169, 148, 144, 140, 159, 143, 222, 220, 172, 206, 2124, 183, 315, 263, 567, 201, 358, 204, 470, 243, 391, 264, 563, 295, 382, 290, 285, 313, 324, 307
OFFSET
0,1
LINKS
FORMULA
a(n) = min{x: A000203(x) mod A000720(x) = n}.
EXAMPLE
n=8: a(8)=32 since sigma(32)=63, primepi(32)=11, and 63 mod 11 = 8.
MATHEMATICA
t=Table[0, {100}]; Do[s=Mod[DivisorSigma[1, n], PrimePi[n]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 2, 10000}]; t
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 05 2002
EXTENSIONS
a(0)=2 inserted by Sean A. Irvine, Dec 16 2024
STATUS
approved