login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073557
Number of Fibonacci numbers F(k), k <= 10^n, whose initial digit is 1.
1
3, 30, 301, 3011, 30103, 301031, 3010300, 30103001, 301029995, 3010299957, 30102999568
OFFSET
1,1
FORMULA
Limit_{n->infinity} a(n)/10^n = log(2), where the base is 10. - Robert Gerbicz, Sep 05 2002
EXAMPLE
a(2) = 30 because there are 30 Fibonacci numbers up to 10^2 whose initial digit is 1.
PROG
(PARI) default(realprecision, 10^4); m=log((1+sqrt(5))/2);
lista(nn) = {my(d=log(10)/m, r=log(sqrt(5))/m, s=log(5-sqrt(5))/m, t=0, u=1); for(n=1, nn, u=10*u; while(s<u, if(floor(r+=d)==floor(s+=d), t++, t+=2)); print1(t+(r<u||floor(r)==floor(s)), ", ")); } \\ Jinyuan Wang, Feb 21 2020
CROSSREFS
Cf. A000045, A047855 (numbers of integers <= 10^n, whose initial digit is 1).
Sequence in context: A136947 A093138 A361896 * A037764 A037652 A037771
KEYWORD
nonn,base,more
AUTHOR
Shyam Sunder Gupta, Aug 15 2002
EXTENSIONS
More terms from Robert Gerbicz, Sep 05 2002
a(9)-a(10) from Jinyuan Wang, Feb 21 2020
a(11) from Sean A. Irvine, Dec 04 2024
STATUS
approved