login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073266
Triangle read by rows: T(n,k) is the number of compositions of n as the sum of k integral powers of 2.
5
1, 1, 1, 0, 2, 1, 1, 1, 3, 1, 0, 2, 3, 4, 1, 0, 2, 4, 6, 5, 1, 0, 0, 6, 8, 10, 6, 1, 1, 1, 3, 13, 15, 15, 7, 1, 0, 2, 3, 12, 25, 26, 21, 8, 1, 0, 2, 6, 10, 31, 45, 42, 28, 9, 1, 0, 0, 6, 16, 30, 66, 77, 64, 36, 10, 1, 0, 2, 4, 18, 40, 76, 126, 126, 93, 45, 11, 1, 0, 0, 6, 16, 50, 96, 168, 224, 198, 130, 55, 12, 1
OFFSET
1,5
COMMENTS
Upper triangular region of the table A073265 read by rows. - Emeric Deutsch, Feb 04 2005
Also the convolution triangle of A209229. - Peter Luschny, Oct 07 2022
LINKS
S. Lehr, J. Shallit and J. Tromp, On the vector space of the automatic reals, Theoret. Comput. Sci. 163 (1996), no. 1-2, 193-210.
FORMULA
T(n, k) = coefficient of x^n in the formal power series (x + x^2 + x^4 + x^8 + x^16 + ...)^k. - Emeric Deutsch, Feb 04 2005
T(0, k) = T(n, 0) = 0, T(n, k) = 0 if k > n, T(n, 1) = 1 if n = 2^m, 0 otherwise and in other cases T(n, k) = Sum_{i=0..floor(log_2(n-1))} T(n-(2^i), k-1). - Emeric Deutsch, Feb 04 2005
Sum_{k=0..n} T(n,k) = A023359(n). - Philippe Deléham, Nov 04 2006
EXAMPLE
T(6,3) = 4 because there are four ordered partitions of 6 into 3 powers of 2, namely: 4+1+1, 1+4+1, 1+1+4 and 2+2+2.
Triangle begins:
1;
1, 1;
0, 2, 1;
1, 1, 3, 1;
0, 2, 3, 4, 1;
0, 2, 4, 6, 5, 1;
MAPLE
b:= proc(n) option remember; expand(`if`(n=0, 1,
add(b(n-2^j)*x, j=0..ilog2(n))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)):
seq(T(n), n=1..14); # Alois P. Heinz, Mar 06 2020
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> if n = 2^ilog2(n) then 1 else 0 fi); # Peter Luschny, Oct 07 2022
MATHEMATICA
m:= 10; T[n_, k_]:= T[n, k]= Coefficient[(Sum[x^(2^j), {j, 0, m+1}])^k, x, n]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Mar 06 2020 *)
CROSSREFS
Cf. A048298, A073265, A023359 (row sums), A089052 (partitions of n).
T(2n,n) gives A333047.
Sequence in context: A125090 A294880 A212219 * A125692 A128258 A104967
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jun 25 2002
STATUS
approved