login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089052
Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= n) = number of partitions of n into exactly k powers of 2.
13
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1
OFFSET
0,25
REFERENCES
J. Jordan and R. Southwell, Further Properties of Reproducing Graphs, Applied Mathematics, Vol. 1 No. 5, 2010, pp. 344-350. doi: 10.4236/am.2010.15045. - From N. J. A. Sloane, Feb 03 2013
LINKS
J. Jordan and R. Southwell, Further Properties of Reproducing Graphs, Applied Mathematics, Vol. 1 No. 5, 2010, pp. 344-350. doi: 10.4236/am.2010.15045. - From N. J. A. Sloane, Feb 03 2013
FORMULA
T(2m, k) = T(m, k)+T(2m-1, k-1); T(2m+1, k) = T(2m, k-1).
G.f.: 1/Product_{k>=0} (1-y*x^(2^k)). - Vladeta Jovovic, Dec 03 2003
EXAMPLE
1
0 1
0 1 1
0 0 1 1
0 1 1 1 1
0 0 1 1 1 1
0 0 1 2 1 1 1
0 0 0 1 2 1 1 1
0 1 1 1 2 2 1 1 1
0 0 1 1 1 2 2 1 1 1
0 0 1 2 2 2 2 2 1 1 1
0 0 0 1 2 2 2 2 2 1 1 1
MAPLE
A089052 := proc(n, k)
option remember;
if k > n then
return(0);
end if;
if k= 0 then
if n=0 then
return(1)
else
return(0);
end if;
end if;
if n mod 2 = 1 then
return procname(n-1, k-1);
end if;
procname(n-1, k-1)+procname(n/2, k);
end proc:
MATHEMATICA
t[n_, k_] := t[n, k] = Which[k > n, 0, k == 0, If[n == 0, 1, 0], Mod[n, 2] == 1, t[n-1, k-1], True, t[n-1, k-1] + t[n/2, k]]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Maple *)
CROSSREFS
Columns give A036987, A075897 (essentially), A089049, A089050, A089051, A319922.
Row sums give A018819.
See A089053 for another version.
Sequence in context: A176724 A015318 A026836 * A284606 A284019 A286135
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 03 2003
STATUS
approved