login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073119
Total number of parts which are positive powers of 2 in all partitions of n.
3
0, 1, 1, 4, 5, 10, 14, 26, 35, 56, 77, 116, 157, 226, 302, 424, 560, 762, 998, 1334, 1727, 2270, 2914, 3779, 4809, 6163, 7781, 9875, 12378, 15565, 19383, 24191, 29934, 37093, 45643, 56201, 68789, 84212, 102564, 124903, 151424, 183499, 221508
OFFSET
1,4
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Alois P. Heinz)
FORMULA
a(n) = Sum_{k=1..n} A007814(k)*A000041(n-k).
G.f.: g(x) = (Sum_{i>0} x^(h(i))/(1-x^(h(i))))/Product_{i>0}(1 - x^i), where h(i) = 2^i. - Emeric Deutsch, Sep 19 2016.
Conjecture: a(n) ~ exp(sqrt(2*n/3)*Pi)/(2*Pi*sqrt(2*n)) ~ p(n) * sqrt(6*n)/Pi, where p(n) is the partition function A000041. - Vaclav Kotesovec, Oct 07 2016
EXAMPLE
a(5) = 5 because in the partitions [1,1,1,1,1], [1,1,1,2'], [1,2'2'], [1,1,3], [2',3],[1,4'], [5] we have 5 positive powers of 2 (they are marked). - Emeric Deutsch, Sep 19 2016.
MAPLE
p2:= proc(n) p2(n):= is(n=2^ilog2(n)) end: p2(1):= false:
b:= proc(n, i) option remember; local t, l;
if n<0 then [0, 0]
elif n=0 then [1, 0]
elif i<1 then [0, 0]
else t:= b(n, i-1);
l:= b(n-i, i);
[t[1]+l[1], t[2]+l[2]+ `if`(p2(i), l[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Sep 29 2011
MATHEMATICA
Needs["DiscreteMath`Combinatorica`"]; f[n_] := Length[ Select[ Log[2, Flatten[ Partitions[n]]], IntegerQ[ # ] && # > 0 & ]]; Table[ f[n], {n, 1, 45}]
a[n_] := Sum[IntegerExponent[k, 2]*PartitionsP[n-k], {k, 1, n}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 28 2014 *)
CROSSREFS
Sequence in context: A322610 A322468 A116930 * A002257 A101528 A119040
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 24 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Aug 26 2002
STATUS
approved