login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072921
a(1)=1; a(n) = a(n-1) + [sum of all decimal digits present so far in the sequence].
5
1, 2, 5, 13, 25, 44, 71, 106, 148, 203, 263, 334, 415, 506, 608, 724, 853, 998, 1169, 1357, 1561, 1778, 2018, 2269, 2539, 2828, 3137, 3460, 3796, 4157, 4535, 4930, 5341, 5765, 6212, 6670, 7147, 7643, 8159, 8698, 9268, 9863, 10484, 11122
OFFSET
1,2
LINKS
FORMULA
a(1)=1, a(2)=2; a(n+1)=2a(n)-a(n-1)+sod(a(n)) (sod = "sum of digits"). - Farideh Firoozbakht, Oct 01 2009
Asymptotically it seems a(n)~c*n^2*log(n) for c~1.99... - Benoit Cloitre, Oct 07 2009
MAPLE
b:= proc(n) option remember; local m;
m:= a(n);
`if`(n=1, 0, b(n-1));
while m>0 do %+ irem(m, 10, 'm') od; %
end:
a:= proc(n) option remember;
`if`(n=1, 1, a(n-1) +b(n-1))
end:
seq(a(n), n=1..50); # Alois P. Heinz, Jun 01 2010
MATHEMATICA
a[1]=1; a[2]=2; a[n_]:=a[n]=2*a[n-1]-a[n-2]+Apply[Plus, IntegerDigits[a[n-1]]]; Table[a[n], {n, 100}] (* Farideh Firoozbakht, Oct 01 2009 *)
a[1] = 1; a[n_] := a[n] = a[n - 1] + Plus @@ Flatten[ Map[ IntegerDigits, Array[a, n - 1]]]; Array[a, 100] (* Robert G. Wilson v, Oct 01 2009 *)
PROG
(Python)
from itertools import islice
def agen(): # generator of terms
an, anp1 = 1, 2
while True:
yield an
an, anp1 = anp1, 2*anp1 - an + sum(map(int, str(anp1)))
print(list(islice(agen(), 44))) # Michael S. Branicky, Oct 01 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 07 2009, based on a posting to the Sequence Fans Mailing List by Eric Angelini, Oct 01 2009
EXTENSIONS
More terms from Alois P. Heinz, Oct 01 2009
STATUS
approved