login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1; a(n) = a(n-1) + [sum of all decimal digits present so far in the sequence].
5

%I #21 Oct 01 2024 15:45:54

%S 1,2,5,13,25,44,71,106,148,203,263,334,415,506,608,724,853,998,1169,

%T 1357,1561,1778,2018,2269,2539,2828,3137,3460,3796,4157,4535,4930,

%U 5341,5765,6212,6670,7147,7643,8159,8698,9268,9863,10484,11122

%N a(1)=1; a(n) = a(n-1) + [sum of all decimal digits present so far in the sequence].

%H Alois P. Heinz, <a href="/A072921/b072921.txt">Table of n, a(n) for n = 1..1000</a>

%F a(1)=1, a(2)=2; a(n+1)=2a(n)-a(n-1)+sod(a(n)) (sod = "sum of digits"). - _Farideh Firoozbakht_, Oct 01 2009

%F Asymptotically it seems a(n)~c*n^2*log(n) for c~1.99... - _Benoit Cloitre_, Oct 07 2009

%p b:= proc(n) option remember; local m;

%p m:= a(n);

%p `if`(n=1, 0, b(n-1));

%p while m>0 do %+ irem(m, 10, 'm') od; %

%p end:

%p a:= proc(n) option remember;

%p `if`(n=1, 1, a(n-1) +b(n-1))

%p end:

%p seq(a(n), n=1..50); # _Alois P. Heinz_, Jun 01 2010

%t a[1]=1;a[2]=2;a[n_]:=a[n]=2*a[n-1]-a[n-2]+Apply[Plus,IntegerDigits[a[n-1]]];Table[a[n],{n,100}] (* _Farideh Firoozbakht_, Oct 01 2009 *)

%t a[1] = 1; a[n_] := a[n] = a[n - 1] + Plus @@ Flatten[ Map[ IntegerDigits, Array[a, n - 1]]]; Array[a, 100] (* _Robert G. Wilson v_, Oct 01 2009 *)

%o (Python)

%o from itertools import islice

%o def agen(): # generator of terms

%o an, anp1 = 1, 2

%o while True:

%o yield an

%o an, anp1 = anp1, 2*anp1 - an + sum(map(int, str(anp1)))

%o print(list(islice(agen(), 44))) # _Michael S. Branicky_, Oct 01 2024

%Y Cf. A007953, A152231, A152232, A152233, A152234.

%K nonn,base

%O 1,2

%A _N. J. A. Sloane_, Oct 07 2009, based on a posting to the Sequence Fans Mailing List by _Eric Angelini_, Oct 01 2009

%E More terms from _Alois P. Heinz_, Oct 01 2009