login
A072815
Sum of proper divisors of 6n + 1.
1
0, 1, 1, 1, 6, 1, 1, 1, 8, 17, 1, 1, 1, 1, 23, 21, 1, 1, 1, 29, 12, 1, 27, 1, 35, 1, 1, 1, 14, 73, 1, 29, 1, 1, 47, 1, 39, 1, 1, 53, 1, 33, 35, 45, 59, 1, 1, 1, 18, 65, 51, 1, 1, 41, 109, 1, 1, 57, 1, 77, 20, 1, 1, 1, 191, 41, 1, 45, 1, 89, 1, 69, 1, 1, 95, 53, 1
OFFSET
0,5
COMMENTS
The square root of t(n) < s(t(4n-1, 4n-2, 4n-3, 4n-4)) < s(t(4n)).
LINKS
Eric Weisstein's World of Mathematics, Restricted Divisor Function.
FORMULA
a(n) = s(t(n)), where t(n) = 6n + 1 and s(n) is the restricted divisor function.
From Amiram Eldar, Apr 12 2024: (Start)
a(n) = A363031(n) - A016921(n) = A001065(A016921(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = P^2/3 - 3 = A145426 = 0.289868... . (End)
EXAMPLE
a(1) = s(t(1)) = 1 since t(1) = 7 and s(7) = 1 under the definition of the restricted divisor function.
MATHEMATICA
Table[c=6n+1; DivisorSigma[1, c]-c, {n, 0, 80}] (* Harvey P. Dale, Nov 13 2013 *)
PROG
(PARI) a(n) = sigma(6*n + 1) - 6*n - 1; \\ Amiram Eldar, Apr 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Hisanobu Shinya (ilikemathematics(AT)hotmail.com), Jul 14 2002
EXTENSIONS
Corrected by Harvey P. Dale, Nov 13 2013
STATUS
approved