OFFSET
1,2
COMMENTS
This constant is related to the convergence properties of the following simple algorithm: w(n+2) = A^( w(n+1) + w(n) ) where A is a positive real. Take any w(1), w(2) reals>0, then w(n) converges if and only if, 0 < A < sqrt(e^(1/e)). For example if A=1/2 w(n) converges to 1/2, if A=1/3, w(n) converges to 0.408004405...(If w(n) converges the limit L is always independent of initial values w(1),w(2) and L is < e).
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 448-452.
MATHEMATICA
RealDigits[E^(E^-1/2), 10, 110] [[1]]
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Aug 05 2002
EXTENSIONS
Edited by Robert G. Wilson v, Aug 08 2002
STATUS
approved