Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Oct 23 2024 11:51:35
%S 0,1,1,2,2,1,2,2,2,1,1,1,3,2,3,2,1,1,3,1,2,2,1,1,4,1,1,1,2,1,3,3,3,1,
%T 1,1,3,1,2,2,2,1,4,1,2,2,1,1,5,1,1,1,1,1,3,1,3,2,1,1,6,1,3,2,1,1,1,1,
%U 2,1,1,1,8,1,2,1,1,1,2,1,3,1,1,1,6,1,1,1,1,1,5,2,1,3,1,1,5,1,3,1,1,1,2,1,3
%N Shadow transform of sigma(n), A000203, starting with 0, sigma(1), sigma(2), ...
%H Alois P. Heinz, <a href="/A072463/b072463.txt">Table of n, a(n) for n = 0..10000</a>
%H Nicholas John Bizzell-Browning, <a href="https://bura.brunel.ac.uk/handle/2438/29960">LIE scales: Composing with scales of linear intervallic expansion</a>, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 39.
%H Lorenz Halbeisen and Norbert Hungerbuehler, <a href="https://www.semanticscholar.org/paper/Number-theoretic-aspects-of-a-combinatorial-Halbeisen-Hungerb%C3%BChler/5743ff2f9c14d22d1a9e570d6951a7c9ef79a612">Number theoretic aspects of a combinatorial function</a>, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%p s:= n-> `if`(n=0, 0, numtheory[sigma](n)):
%p a:= n-> add(`if`(modp(s(j), n)=0, 1, 0), j=0..n-1):
%p seq(a(n), n=0..120); # _Alois P. Heinz_, Sep 16 2019
%Y Cf. A000203.
%K nonn
%O 0,4
%A _N. J. A. Sloane_, Aug 02 2002